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Abstract 

 

A substantial amount of money is spent on manual labour in keeping 

common public places garbage free. The work is time consuming and 

requires constant vigilance. The problem can also be routine 

maintenance of hygiene and sanitation in closed spaces. The working 

conditions are unhygienic in certain cases and human interference is 

undesirable. The problem requires sustained group work and 

indefatigability on the part of the workers. Such a problem can be 

solved ingeniously by automation and swarm intelligence. Our 

prototype swarm robots provide an effective solution for collecting 

randomly scattered garbage and other waste matter and depositing 

them to a common disposal area in an economic and efficient manner.  

The technique can be also be successfully employed in remote search 

and rescue operations, fast scanning of a given area for an object and 

autonomous collection of hazardous substances. The robot design is 

simple, robust, virtually maintenance free and cost effective. The 

modular nature of our design makes it very versatile and it is able to 

perform various kinds of tasks from garbage cleaning to search and 

rescue operations to exploration activities in the harshest of climates.   

 

 

 

 



 

Introduction 

 

Swarm robotics is the study of how large number of relatively simple physically 

embodied agents can be designed such that a desired collective behavior 

emerges from the local interactions among agents and between the agents and 

the environment. It is a novel approach to the coordination of large numbers of 

robots. It is inspired from the observation of social insects ---ants, termites, 

wasps and bees--- which stand as fascinating examples of how a large number 

of simple individuals can interact to create collectively intelligent systems. 

Social insects are known to coordinate their actions to accomplish tasks that are 

beyond the capabilities of a single individual: termites build large and complex 

mounds, army ants organize impressive foraging raids, and ants can collectively 

carry large preys. In a similar manner our swarm robots collectively scan a 

certain region for garbage and other waste matter and dispose them off in a 

coordinated fashion. The real time coordinates of all the robots are 

simultaneously tracked using an overhead camera and then sent to a Central 

Processing Unit for the execution of maze navigation and obstacle avoidance 

algorithms. They are wirelessly sent commands by the CPU for locomotion and 

garbage collection. On-board sensors on the robot grippers identify garbage and 

hence collect them. Due to a presence of a number of robots redundant and 

repetitive scanning of the region is minimized and it reduces time taken 

significantly. The concept can be successfully implemented and manual effort 

for such tasks can be eliminated.  

 

 

 

 



KEY FEATURES 

 

1. A powerful and size efficient electrical board: The main design goal on the 
electrical systemôs printed circuit board (PCB) is to support all the functionality 

required by the project while maintaining the required small size of the robots. 
The board is an Atmega 32 based development board that supports 3 analog 

inputs, 1 serial port, a wireless module, 8 digital I/O ports, a 7-segment LED, 4 
PWM generators, and a JTAG programming header.  
 

2. Wireless communication mechanism between agents: A mechanism must 
be provided for the agents to communicate among with each other through 

wireless messages. This will allow flexibility and abstraction of computing 
power to an external computer machine and allows the agents to focus only on 

executing behaviors rather than computing locally what to do next. This 
promotes loose coupling behaviors and dynamic programming.  

 
3. Visual recognition algorithms for the agent location, identity and facing 

direction: Algorithms to analyze pictures taken from a top view camera to an 
area were the agents are present are necessary. Such technique provides real-

time tracking of robot location, identity, and facing direction.  
 
4. Autonomous navigation from visual recognition feedback and wireless 

communication: Each robot will be provided limited visual information 
wirelessly from top-view camera for on-board processing. Each robot will use 

this information, along with other on-robot sensors, to navigate around the robot 
world, trying to determine her relative location, to obtain her direction of 

motion, and to ascertain her next movement.  
 

5. Autonomous surrounding awareness from visual feedback and wireless 
communication: By querying the visual algorithms, a robot will fi nd the 

position of obstacles and other agents, with respect to its position, and will 
autonomously determine her next action.  

 
6. Autonomous artificial intelligence tasks executions system: An agent must 

be able to complete a given task. The task is described as two sets, one set of 
rules and one of goals. Each rule can tell the robot to match location with 
objects or to behave in a certain manner. The reaching of a goal will signal the 

completion of the task. By integrating the visual algorithms and a task, the 
system can interact with the robot autonomously and tell her when the goal is 

achieved and also provide other feedback that could help the agent to complete 
the task.  



MECHANICAL PLATFORM  
 

Robot Design 
 

 

  
 
Rendered SolidWorks models of our swarm robot and the I-Gripper  

 
Main Chassis  
 

The chassis of each Robot is made of a 12 cm wide and 14 cm long Perspex 
frame. Perspex was chosen as material due to its low cost and the relative ease 

of machining. This frame serves as a building block for the entire structure of 
the robot. The chassis was machined to also support the motors and strategically 

accommodate the battery pack with all the wiring in an elegant manner. The 
development board has been mounted on a hinged platform keeping in mind 

ease of working. Each robot has four 3ò all-threaded rods, arranged in a 
rectangular formation and screwed into the chassis, serve as the supporting 

columns for the rest of the assembly. 

Wheels  

Each Robot rotates and translates by means of two motorized aluminium wheels 

or radius of 7cm. The large wheel size with respect to the entire platform was 
chosen to achieve efficient rotation. 

Grippers 

The I-Gripper   

The I-gripper is designed for objects with sharp edges and cubical shape. The 
gripper consists of 2 movable plates mounted on a central support attached to 

the bot. Planar motion can be imparted to the plates with the help of two motors. 



The distance between the two plates can also be adjusted manually by moving 
their mounts along the slots inscribed in the central support to configure the 

gripper for different sized objects. 

 

The Robotic arm gripper  

 

The robotic arm is powered by 4 (four) actuators- 1 pneumatic cylinder and 3 
DC motors. An electric signal from the microcontroller board activates a 
solenoid valve in the pneumatic actuator. An appropriate signal depending upon 

the amount of rotation needed to the arm can actuate the pneumatic cylinder. 
The cylinder is connected off-axis to the arm so as to convert linear motion to a 

rotary motion. Pneumatic cylinder offers the distinct advantage of higher torque 
capability than an ordinary DC motor and helps us adhere to our core 

philosophy of ñcost effectivenessò in designing this system. 

Motors 1 and 2 impart rotary motion to the individual arm units depending upon 
the amount of rotation required to reach the final end point.  

Motor 3 is the one that imparts the capability to grip an object. The motor shaft 
is connected to a flexible wires connected to individual finger on the hand of the 

arm. As these wires wind over the shaft of the motor, the fingers fold and grip 
the object. A reverse motion of the motor causes the hand to release the object. 

  



 

ELECTRONIC HARDWARE  

 
The electrical system consists of compact printed circuitry boards that feature 

all the electronic system including a microprocessor and a wireless chip. In 
addition, various light emitting diodes (LEDs) as well as an optional LCD are 

strategically mounted on the boards for debugging purposes. 
 

Power Supply  
 

Each Robot features a 2-cell, 7.4V Lithium ion battery pack. Lithium ion 
chemistry batteries are preferable over other battery chemistries because of their 

higher energy density and lower cell count along with cheap and easy 
availability. 

 
Microcontroller  
 

Each Robotôs top printed circuit board has an 8-bit ATmega 32,16MHz 
processor. This microcontroller processes of all the inputs and outputs, 

including creating the PWM motor driving signals. This ATmega32 was chosen 
because of its capabilities that lend themselves to easy implementation of sensor 

and control units. A JTAG programming port allows the hard-wire 
programming of the processor. 

 
 
 

 Wireless Communication 
 

The wireless communication between the central processing unit and each robot 
is facilitated by a Xbee 1 mW antenna wireless module which communicated 



with another Xbee module attached to the CPU via a USB to serial converter. 
The XBee boards are mounted to each robotôs main (top) PCB. 

 
Motors  
 

Each robot has two 12V 150RPM DC Metal Gear Motors. Low power 
consumption and excellent torque output make these motors extremely efficient 

for the purpose of our design. 
  

 

 

SOFTWARE DESIGN 
 

SOFTWARE SYSTEM  
 

 Software Architecture 
  

This project requires the design and implementation of three different software 

systems, each using different programming languages, and a main system that 

interfaces them together. The first software system represents the behaviours 

and parameters that are programmed into the robotôs microprocessor. This 

system represents the low-level software system of the project, is coded in 

embedded C, and targets the ATmega32 microprocessorôs architecture.  

The second software system provides all the computer vision algorithms 

required. The vision functions are written using OpenCV, Intelôs open source 
computer vision library (http://intel.com/technology/computing/opencv/), and is 

written in C++. The design goal for this system is to provide a set of functions 
that optimize performance and perform each of the desired tasks by using single 



function calls. This complex function intentionally hides the implementation 
and details of its inner workings.  

 
The final and most crucial software system is the one in charge of integrating all 

these systems, and synchronizing them to work together to create and pass 
messages between them. The final system design goals are to provide a simple 

graphical user interface for a complex and well designed object-oriented 
system. This software system, written in C++, is responsible for handling all the 

artificial intelligence commands and behaviours. The project uses and integrates 
a multi-language platform software system, each one with independent goals, 

but targeted to work together. We can refer to the three systems as low-level 
system (C), midlevel system (C++) and high-level system (again in C++).  

 
Low-Level System (LLS)  

 
The main goal of this system is to give the robots the ability to perform different 
behaviours to allow interaction with the hardware (i.e., motors, LEDôs etc.). The 

LLS is designed with the goal of encapsulating each action into simple function 
calls, each of which will cause one and only one result in hardware. The robot 

motion has been segregated into four sub classes: moveforward(), moveleft(), 
moveright(), stop() and moveback(). The hardware components that need to be 

controlled are as follows.  
Å Two Motor Controllers: These motor controllers provide independent 

movement to the two wheels. Each wheel receives a high (1) or a low (0) value, 
corresponding to either an ON or an OFF state of the motor.  

Å Digital I/0 ports: The ability to set for read or write up to eight distinct pins on 
the I/O port headers permits additional hardware components to be added to the 

system. Some possible uses of these pins are for IR sensors (as inputs) or for 
LEDs (as outputs).  
Å Serial Communication: The ability to communicate with another serial device 

is available. The exchange of data can be used for further intelligent behaviour 
 

In addition to the hardware control provided above, the second goal is to create 
a wireless protocol to allow the robot to receive and send messages from the 

outside world. A function has been created that handles the incoming packet 
from the wireless receiver and transform its data into one of the commands that 

are specified above. By integrating these actions, we can control the behaviour 
of the robot by simply sending the packets with the right data. In order for this 

to work properly, we need to specify a consistent data packet that will tell the 
robot an appropriate series of actions. 
 
 

 



Data Packet Protocol 
 

 
Each and every robot has a set of four commands: 

 
Move forward: Both Motors A and B are given a command to rotate forwards 

 
Move backward: Both Motors A and B are given a command to rotate 

backwards 
 

Move left: The right motor B actuates while Motor A remains passive 
 

Move right: The left motor A actuates while Motor B remains passive. 
 

Stop: No voltage is applied to either motor 
 
Each robot has a distinct 1 character code for each of these motions which is 

recognized only by the microcontroller of that particular robot. The CPU sends 
these codes wirelessly through a Xigbee module. They are received by all the 

robots but accepted only by that robot whose command subset the code belongs 
to. In case of a large number of robots, the same set of codes can be used for 

each robot along with another code which first identifies the robot. The 
corresponding robot then receives the signal while other robots wait for their 

respective identification commands. For e.g. we used the command subset 
{W,X,A,D,S} and {T,B,F,H,G} for two robots. 

 
The agent's Xbee wireless module allows the robot to talk to the coordinator 

XBee module, which uses the C++ code in the highlevel system. The Xbee 
modules allow a two-way communication from the sender to a base board 
plugged into the computer. The importance of wireless communication is 

critical since it allows total control of the robot movement and data from an 
outside computer, which of course can have orders of magnitude of higher 

capabilities than the embedded microcontrollers on the robots.  
 

 
Computer Vision Systemôs Mid-Level System (MLS)  

 
The main goal of the second software system, the MLS, is to provide multiple 

computer vision functions to allow the high-level system to locate and organize 
all the agentsô information that is located within the area. Enables us to track 

each individual robot independently and provides its real time co-ordinates as 
well its orientation relative to the captured frame.  



Å Frames are continuously acquired through an overhead 1.3 MP Microsoft Life-
cam and transmitted through an USB cable to a computer.  

 
Å Once obtained the frame is first subjected to noise reduction techniques and 

then the image is broken into the three primary color channels. Subsequently, 
binary thresholding is done for all the channels to find out the brightest single 

expanse of pixels to identify our robotôs top surface using an inbuilt function 
cvFindContours().  

 
Å Using another function cvApproxPoly() , the bright contour is approximated as 

a polygon. Depending upon the number of sides and area constraints, the 
identity of the robot is known. The function cvContourMoments() gives us the 

centroid of each contour giving us the real time coordinates of each robot.  
 

Å cvFindContours() also provides us with the vertex coordinates, so that the 
length of each side can be calculated. The shortest sideôs midpoint is found out 
and hence the direction vector of each robot is calculated.  

 
Å To navigate the robot to a particular point the motors are wirelessly sent 

commands to rotate the robot until the direction vector and the target vector, 
calculated using the target point and the robot countour centroid are aligned. 

The angle between the vectors is calculated for each frame. Once aligned, the 
robot is asked to move forward until the contourôs centroid coincides with the 

target point. Once it reaches within a given threshold distance of the target 
point, the robot stops. 
 
 

High-Level System (HLS) 
  

The high-level system is the most important component of the entire project. 
The HLS integrates the other two systems and orchestrates their interactions. 

Since there will be three agents running at the same time, this compiler runs 
code in a multithreaded fashion to guarantee the parallel running of the code. 

The main design goal for the HLS is to create a heavily object-oriented platform 
that can be easily expanded while providing robustness, modularity and 
functionality. The HLS is divided into different subsystems and their 

interactions as shown in. The maze navigation and obstacle avoidance 
algorithms are implemented in the HLS. 

 
The Navigation Algorithm 

 

¶ The region is first segregated into a grid which is actually a 2-

dimensional array created in the memory of the CPU. At any moment of 



time, an element of the array can have three values: 0, 1 or 2. 0 
corresponds to an unexplored part of the grid, 1 corresponds to an 

explored element of grid and 2 corresponds to a user defined obstacle. 

¶ Initially all elements of the array are assigned 0 except the obstacles 

which are assigned 2 by the user. 

¶ The default motion of the robot is to follow a spiral path for sweeping the 
whole grid, i.e. first the outermost elements( 2 rows and 2 columns) of the 

grid are explored and then the adjacent elements(again 2 rows and 2 
columns) are explored 

¶ At any given position of the robot, the next destination of the robot is 

found out by the spiral algorithm, and all possible paths are found out to 
reach the next destination point. 

¶ The paths are stored in a separate array in the form of a set of co-
ordinates and the shortest path is found out. The robot is then instructed 

to follow that path. 

¶ Using real time feedback from the overhead camera, the present location 

of the robot is tracked and it is guided to the destination point. Once 

reached, the next destination point is found out.In this manner, whole of 
the region is explored while avoiding the obstacles. 

 
The collection algorithm 

 

¶ While navigating through the region, if the onboard sensors of the robot 

happen to encounter any sort of trash or waste matter, the motion is 
temporarily stopped. 

¶ The grippers close around the trash matter until the matter is well within 
the grip. Once secured, the robots abandon their path and the navigation 

algorithm stops and move the trash to a common base area whose 
coordinates are user defined and known prior to the start of the algorithm. 

¶ The grippers release the trash matter and the robot retracts back to where 

it left the region. 

¶ The algorithm is repeated if it finds another trash object until whole of the 

allotted region has been scanned. 

  

A typical path followed by a robot 
 



Field Camera Snapshot  
 

 
Simultaneous detection of three robots  
(The green segment represents the shortest side of the polygon inscribed on each robot.) 
 

 
 
Actual close up of the top view of two robots 
 
 



 

SIMULATIONS & TESTING 

Simulation of the robotic arm gripper  

   

    

  

 

1. The six images showing 

the proper orientation of 

the arm till the capture 

stage sequentially in a 

rendered CAD simulation 

2. The two images showing 

the two modes of the 

robotic palm 

3. The robotic arm in action 



Testing of the vision and navigation algorithms 

The robustness and effectiveness of the vision based algorithms was tested 

successfully. A single robot naviagated the entire grid with user defined 

obstacles successfully.  

 
A single wired robot executing the navigation algorithm during the initial testing phase. 
Red dots represent obstacles and blue dots represent the explored part of the maze. 
The wireless and the vision algorithms were tested using ñFollow the leaderò a 

standard algorithm in swarm robotics. Two different robots were used in the 

algorithm. One was manually controlled wirelessly (ñTrapeziumò). The other 

(ñHexagonò) was made to follow it autonomously using real time feedback 

control from the camera and serial wireless communication to the robot. Some 

screenshots from the actual video made during testing: 

 

 



The Modular Design Concept 
 

 

Our emphasis in this project has been on the application of swarm robotics to a 
wide variety of fields. By integrating various modules with our current basic 

design we can use the collective swarm behaviour to solve a number of 
problems as the basic navigation algorithm using image processing remains 

same. For example, instead of grippers we can have a vacuum suction onboard 
each robot with cleans the surface as it scans the whole region.  The grippers 

can be disintegrated and the vacuum suction along with its circuitry can be 
mounted on the robot. This solution can also be used to search a particular 

object in hostile terrain or maybe even water. Since we cannot have an overhead 
camera in these situations, an onboard Global Positioning System (GPS) can be 

used to track the real time coordinates of the robots. Using their synchronized 
search procedure and having a sufficiently large number of robots the terrain 
can be scanned in a very short time with desirable results. The locomotion 

design has also been kept modular. The basic motors remain the same. Using a 
number of motors which only replicate the behaviour of the original two 

motors, we can use any sort of locomotion technique. It may be a hexapod, 
continuous tracks or motorized paddles in case of water. The basic wheels can 

be detached and the desired type of movement can be achieved by using 
appropriate wheels. The algorithms remain the same and complex cases can be 

handled by adding more functions to the existing program. The functions can be 
in the form of noise filtering, obstacle detection or modified cases of 

locomotion. 

 
 

 
The continuous track module 


